Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

GaN for THz Sources

Identifieur interne : 002E49 ( Main/Repository ); précédent : 002E48; suivant : 002E50

GaN for THz Sources

Auteurs : RBID : Pascal:11-0232784

Descripteurs français

English descriptors

Abstract

In this work we investigate two different approaches to generate THz radiation by the use of the unique electrical and thermal properties of GaN. One method is heterodyne photomixing, a compact and inexpensive approach to generate continuous electromagnetic radiation in the terahertz range, with tuneable frequency. It uses two lasers with slightly different wavelengths that illuminate an ultrafast photoconductor. The interference of both laser beams generates a beat frequency of the illumination intensity in the terahertz range. One drawback of the conventionally used LT GaAs as ultrafast photoconductor material is the relatively low THz power in the nW to μW range. The aim of our work is to increase the output power by replacing the LT GaAs with GaN. This semiconductor is rather known as basic material for blue LEDs and lasers, but it has also remarkable electrical and thermal properties that allow higher laser power and bias voltage. A more conventional, electronic approach to generate THz radiation consists in the fabrication of an oscillator circuit based on ultrafast transistors, e.g. Hetero Field Effect Transistors based on InGaAs. These circuits can be designed up to about 100 GHz oscillation frequency. The THz region is achieved by frequency multipliers, e.g. realized by very small-sized Schottky diodes. However, each multiplier stage considerable reduces the output power. In this field we investigate GaN based transistor devices to profit from the much better power performance of this material, compared to classical semiconductors. Devices in this material system are usually used for high power applications at moderate frequencies, but the very high electron saturation velocity of GaN allows the application above 100 GHz as well.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0232784

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">GaN for THz Sources</title>
<author>
<name sortKey="Marso, M" uniqKey="Marso M">M. Marso</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Science, Technology and Communication, University of Luxembourg, 6, rue Richard Coudenhove-Kalergi</s1>
<s2>1359 Luxembourg</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
<wicri:noRegion>1359 Luxembourg</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0232784</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0232784 INIST</idno>
<idno type="RBID">Pascal:11-0232784</idno>
<idno type="wicri:Area/Main/Corpus">003191</idno>
<idno type="wicri:Area/Main/Repository">002E49</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary compounds</term>
<term>Field effect transistors</term>
<term>Frequency multipliers</term>
<term>Gallium Arsenides</term>
<term>Gallium Nitrides</term>
<term>III-V semiconductors</term>
<term>Indium Arsenides</term>
<term>Laser beams</term>
<term>Oscillation frequency</term>
<term>Output power</term>
<term>Photoconductors</term>
<term>THz range</term>
<term>Ternary compounds</term>
<term>Thermal properties</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Multiplicateur fréquence</term>
<term>Domaine fréquence THz</term>
<term>Faisceau laser</term>
<term>Propriété thermique</term>
<term>Puissance sortie</term>
<term>Fréquence oscillation</term>
<term>Photoconducteur</term>
<term>Composé binaire</term>
<term>Semiconducteur III-V</term>
<term>Gallium Nitrure</term>
<term>Composé ternaire</term>
<term>Gallium Arséniure</term>
<term>Indium Arséniure</term>
<term>Transistor effet champ</term>
<term>GaAs</term>
<term>Ga N</term>
<term>As Ga</term>
<term>As Ga In</term>
<term>GaN</term>
<term>InGaAs</term>
<term>0130C</term>
<term>0707D</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this work we investigate two different approaches to generate THz radiation by the use of the unique electrical and thermal properties of GaN. One method is heterodyne photomixing, a compact and inexpensive approach to generate continuous electromagnetic radiation in the terahertz range, with tuneable frequency. It uses two lasers with slightly different wavelengths that illuminate an ultrafast photoconductor. The interference of both laser beams generates a beat frequency of the illumination intensity in the terahertz range. One drawback of the conventionally used LT GaAs as ultrafast photoconductor material is the relatively low THz power in the nW to μW range. The aim of our work is to increase the output power by replacing the LT GaAs with GaN. This semiconductor is rather known as basic material for blue LEDs and lasers, but it has also remarkable electrical and thermal properties that allow higher laser power and bias voltage. A more conventional, electronic approach to generate THz radiation consists in the fabrication of an oscillator circuit based on ultrafast transistors, e.g. Hetero Field Effect Transistors based on InGaAs. These circuits can be designed up to about 100 GHz oscillation frequency. The THz region is achieved by frequency multipliers, e.g. realized by very small-sized Schottky diodes. However, each multiplier stage considerable reduces the output power. In this field we investigate GaN based transistor devices to profit from the much better power performance of this material, compared to classical semiconductors. Devices in this material system are usually used for high power applications at moderate frequencies, but the very high electron saturation velocity of GaN allows the application above 100 GHz as well.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7945</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>GaN for THz Sources</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Quantum sensing and nanophotonic devices VIII : 23-27 January 2011, San Francisco, California, United States</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>MARSO (M.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>RAZEGHI (Manijeh)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SUDHARSANAN (Rengarajan)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>BROWN (Gail J.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Faculty of Science, Technology and Communication, University of Luxembourg, 6, rue Richard Coudenhove-Kalergi</s1>
<s2>1359 Luxembourg</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>79450Y.1-79450Y.9</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham WA</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-8482-6</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174731750290</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>33 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0232784</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this work we investigate two different approaches to generate THz radiation by the use of the unique electrical and thermal properties of GaN. One method is heterodyne photomixing, a compact and inexpensive approach to generate continuous electromagnetic radiation in the terahertz range, with tuneable frequency. It uses two lasers with slightly different wavelengths that illuminate an ultrafast photoconductor. The interference of both laser beams generates a beat frequency of the illumination intensity in the terahertz range. One drawback of the conventionally used LT GaAs as ultrafast photoconductor material is the relatively low THz power in the nW to μW range. The aim of our work is to increase the output power by replacing the LT GaAs with GaN. This semiconductor is rather known as basic material for blue LEDs and lasers, but it has also remarkable electrical and thermal properties that allow higher laser power and bias voltage. A more conventional, electronic approach to generate THz radiation consists in the fabrication of an oscillator circuit based on ultrafast transistors, e.g. Hetero Field Effect Transistors based on InGaAs. These circuits can be designed up to about 100 GHz oscillation frequency. The THz region is achieved by frequency multipliers, e.g. realized by very small-sized Schottky diodes. However, each multiplier stage considerable reduces the output power. In this field we investigate GaN based transistor devices to profit from the much better power performance of this material, compared to classical semiconductors. Devices in this material system are usually used for high power applications at moderate frequencies, but the very high electron saturation velocity of GaN allows the application above 100 GHz as well.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00G07D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Multiplicateur fréquence</s0>
<s5>11</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Frequency multipliers</s0>
<s5>11</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Domaine fréquence THz</s0>
<s5>37</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>THz range</s0>
<s5>37</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Faisceau laser</s0>
<s5>38</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Laser beams</s0>
<s5>38</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Propriété thermique</s0>
<s5>41</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Thermal properties</s0>
<s5>41</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Puissance sortie</s0>
<s5>42</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Output power</s0>
<s5>42</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Potencia salida</s0>
<s5>42</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Fréquence oscillation</s0>
<s5>43</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Oscillation frequency</s0>
<s5>43</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Frecuencia oscilación</s0>
<s5>43</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Photoconducteur</s0>
<s5>47</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Photoconductors</s0>
<s5>47</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>51</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>51</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Gallium Nitrure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Gallium Nitrides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>53</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>53</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Gallium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>54</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Gallium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>54</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>55</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>55</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Transistor effet champ</s0>
<s5>61</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Field effect transistors</s0>
<s5>61</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Ga N</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>As Ga</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>As Ga In</s0>
<s4>INC</s4>
<s5>77</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>GaN</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>0707D</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fN21>
<s1>157</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Quantum sensing and nanophotonic devices</s1>
<s2>08</s2>
<s3>San Francisco CA USA</s3>
<s4>2011</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E49 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002E49 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0232784
   |texte=   GaN for THz Sources
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024